اَنتِگرال (به انگلیسی: Integral) مقدار مشترک ممکن زیرینۀ مجموعهای ریمانی و زبرینۀ مجموعهای ریمانی یک تابع حقیقی در بازۀ مفروض است.[۱] انتگرال از مفاهیم اساسی در ریاضیات است که در کنار مشتق دو عملگر اصلی حساب دیفرانسیل و انتگرال را تشکیل میدهند.
نخستین بار لایب نیتس نماد استانداردی برای انتگرال معرفی کرد.
![\int _{a}^{b}f(x)\,dx](https://upload.wikimedia.org/math/f/a/0/fa0616d6c004ba3f4a8873b1cf6f088b.png)
و
نقاط ابتدا و انتهای بازه هستند و
تابعی انتگرالپذیر است و
نمادی برای متغیر انتگرالگیری است.
از لحاظ تاریخی یک کمیت بینهایت کوچک را نشان میدهد. هر چند در تئوریهای جدید، انتگرالگیری بر پایه متفاوتی پایهگذاری شدهاست.