وقتی که مقادیر متوالی به یک متغیر نسبت داده میشود، و آن متغیر بینهایت به عدد ثابتی نزدیک شود، به طوری که اختلاف آنها از مقدار ثابت به هر اندازه کوچک قابل انتخاب باشد، این مقدار ثابت را حد همه مقادیر متغیر میگویند.
کاربرد مفهوم حد در ریاضی در توصیف مقداری است که یک تابع یا دنباله به آن نزدیک میشود، هنگامی که ورودی آن تابع یا شمارندهٔ آن دنباله به یک مقدار مشخص نزدیک میشود.[۱] حد یک مفهوم اساسی در حساب دیفرانسیل و انتگرال و در حالت کلی در آنالیز ریاضی است و در تعریف پیوستگی، مشتق و انتگرال کاربرد دارد. موضوع حد، به منظور بیان رفتار یک تابع میپردازد و میتواند رفتار آن را در نقاط روی صفحه و یا در بی نهایت هم ارزیابی کند.
مفهوم حد یک دنباله به حالت کلی تر حد شبکهٔ مکانشناسی گسترش مییابد و ارتباط نزدیکی با حد و حد مستقیم در نظریهٔ ردهها دارد.
ریاضیدانان پیش از آنکه مفهوم دقیق تر حد را ارائه کنند، در مورد آن مجادلههای بسیار کردهاند. یونانیها در عصر باستان درکی از مفهوم حد داشتهاند. برای نمونه ارشمیدس مقدار تقریبی را با استفاده از پیرامون چند ضلعیهای منتظم محاط در دایره به شعاع یک، وقتی که تعداد اضلاع بدون کران افزایش مییابد به دست میآورد. در قرون وسطی نیز تا دورهٔ رنسانس مفهوم حد برای بدست آوردن مساحت شکلهای گوناگون بکار گرفته میشد.[۲]
در نوشتار ریاضی حد را گاهی به صورت lim نمایش میدهند مانند lim(an) = a، گاهی با یک پیکان رو به راست (→) نمایش میدهند مانند: an → a و گاهی هم به فارسی حد مینویسند.